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THE SIMILARITY LAW FOR HYPERSONIC FLOW AN REQUIREMENTS FOR DYNAMIC
SIMILARITY OF RELATED BODIES IN FREE FLIGHT !

By FuanNk M. Hamaker, Sranrorp E. Nrier, and Tuomas J. Wown

SUMMARY

The similarity law for nonsteady, inviscid, hypersonic flow
about slender three-dimensional shapes is derived in terms of
customary aerodynamic parameters. The conclusions drawn
Jrom the potential analysis used in the development of the law
are shown to be valid for rotational flow. A direct consequence
of the hypersonic similarity law is that the ratio of the local
slatic pressure to the free-stream static pressure is the same at
corresponding pornts in similar flow fields.

Requirements for dynamic similarity of related shapes in free
flight, including the correlation of their flight paths, are obtained
using the aerodynamic forces and moments as correlated by the
hypersonic similarity law. In addition to the conditions of
hypersonic similarity, dynamic similarity depends wpon con-
ditions derived from the inertial properties of the bodies and the
immersing fluids. In order to have dynamic similarity, how-
erer, rolling motions must not occur in combination with other
meotions.

The law 1s examined for steady flow about related threc-
dimensional shapes. The results of a computational investiga-
tion. showed that the similarity law as applied to nonlifting
cones and ogives i8 applicable over a wide range of Mach num-
bers and fineness ratios. In the special case of inclined bodies
of recviution, (e luw is eaicnded (o include soine sigalfoint
effects of the viscous cross force. Results of a limited experi-
mental investigation of the pressures acting on two inclined
cuiis are Jound to check the lam ae it amplice to hodies of
revolution.

INTRODUCTION

The hypersonic similarity law for steady potential Hows
nbout thin airfoil sections and slender nonlifting bodics of
revolution was first developed by Tsien in reference 1.
Hayes (ref. 2) investigated this Inw from tle standpoiut of
analogous nonsteady flows and concluded that it would also
apply to nonpotential flows containing shock waves and
vorticity, provided the local Mach number was everywlere
large with respect to 1. He also reasoned that similitude
could be obtained in hypersonic flows about elender three-
dimensional bodies of arbitrary shape; however, the form of
the similarity law in tenns of customary acrodynamic
paraineters was not determined.  Oswatitsch (ref. 3) investi-
gated the law for two-dimensional steady flow in the hmiting
case where the Mach numnber tends toward infinity nnd,
lience, censes to be a flow parameter.  His formulation of the

law, therefore, involves only thickness ratio and angle of
attack. Goldswerthy (ref. 4) investigated the effects of
rotation on the hypersonic similarity law for two-dimensional
steady flow. His results corroborated, in part, the previous
findings of Hayes and showed the potential analysis of Tsien
to be valid.

An investigntion of the law as it applies in nonsteady flow
was mude by Lin, Reissner, and Tsien (vef. 5).  In particular,
the neeessary conditions for similarity of hiypersonic flow
about oscilluting two-dimensional bodies were determined.
The analysis for more arbitrnry inotion of two- or three-
dimensiomul bodies is apparently not nvailable,

Ehret, Rossow, nnd Stevens (ref. 6) investigated the hyper-
sonic similarity law for steady flow nbout nonlifting bodies
of revointion by comparing pressure distributions calculated
bv meuns of the method of characteristics.  They found the
iaw to be applicatde over a wide range of Mach numbers and
thickuess ratios. Their investigation did not, however,
iuclude the effects of vorticity arising from the curvature of
the nose shock wave. Rossow (ref. 7) continued this in-
vestigntion and found that the law was equally valid when
the effects of vorticity were inchuled in the calculations.
These findings eorroborated, in psrt, the observations of
Haves and indicated that the law may be used with con-
fidence to investigate the aerodynamic characteristies for
steady flow about nonlifting bodies of revolution at hyper-
sonie speeds.

it appears desirabie, therciore, o witcuipt to unify the
different treatinents of the simiilarivy law into a single formu-
lation. The primary pirpose of this report is, then, to
tdletermine the form of the hypersonic similarity Inw for non-
steady f{low abont slender three-dimensional bodies of
arbitrary shupe and to present the results in terms of custom-
ary acrodynnmie parameters. It is further undertaken
to exumine the hypersonic similarity law in some detail as
it. applies to steady flow,

The possibility of obtaining a hypersonic similarity law
for correlating the nerodynamic forces and moments on
reluted shapes in free flight suggests a more general dynamic
problem, that of correlating their motions with the aid of
this law. Henee, it 18 also undertaken in this report to
determine the requirenients on the ertial properties of
related bodies and the immersing fhuids in order that such
bodies may have similar free-flight paths, that is, dynamie
similarity.

t Supersedes NACA TN 2443, “1he Shinllarity Law for Hypersonde Flow Abont Slender “Phree Dimensfots] shapes,” by Frank M. Hamsker, Stnford E. Nelee, and AL J. Eggers, Jr.,
1951, and NACA TN 2031, *“The Similurity Law for Nonsleady Iyporsorzic Flows wid Requirements for the Dynusnnesl Stimilarity o ftebated Baxdies ia Freo Fiight,” by Frank M. llamaket

and Thomas J. Wong, 1952,
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SYMBOLS
a speed of sound
A charaeteristie referenee area of hody, A=b
b characteristic width of body
3 : side foree
' side-force eocflicient

! il)o Vo’/l

]

Ce side-foree funetion
; drag

'p drag cocfhicient, ;— *‘; ;
- %Po‘ 0 A
(&M drag function

, > W rolling moment
T rolling-moment eocflicient, --- o :
- %p() 1 ()'.’1 b
@ rolling-moment funetion

. : lift

«, lift eocfficient, , - 1.,

- L TIAN
Cy lift function

s T o ditehing moment
(e pitehing-moment eocflicient, il -

. $poliiale
C. pitching-moment function

; . yawing momeint
L vauwing-moment coefficient, * g T
%Po‘ ey

i yvawing-moment funetion
e, speeifie lieat at constant pressure
s speeifie heat at constant volume
c charaeteristie length of body
€, seetien drag cocflicient of circular eylinder

with axis perpendieular to the flow
Ca, mean ¢q, for a body of revolution
. : ebt

D displaeed-fluid-mass factor, ,)po

d length of flight path

F viscous forec or moment function

f dimensionless perturbation potential funetion

n general functional designation

G body-shape function

] dimensionless body-sltape funetion

h vector from the origin of the eoordinate system
to any poiut o tite body

1.k unit vectors along coordinate axes ry,z, re-
speetively

s : :
/ moments of inertin of bhocdy ubout the ry,:
I"—" axes, respeetively
2—2

{ s b
K=MK 302 1
K.=Mx, Ks M8

e pb > hypersonie similarity paru-

Ki=8.K,- ML (1) iy
K= ﬁ) K=M,(55)

Vo RS

el o b:n . cth
K, ,— [\'_-_," y K w 5 g 5 o s
= i L. " {,-y {dynamic similarity
s Do D mrnmeters
A:—:' ] ! ]\u :T l B
e
Limmn direction cosines of the unit ovter normml
veetor to the bedy surface

A Maeh mumber
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MMM,

monients acting on bady about ry,z axes,

_ respectively

N unit outer normal veetor to surface of hody

r stntic pressire

mar rolling, pitehing, and yawing veloeities, re-
spectively

4 radins of curvatnure of flight path

. cross Reynolds siumber based on maximmm
Lody diameter and the component of the
free-stream velocity normal to the hody
axis

r radius of body of revolution at any station x

x cross force per unit length

t characteristie depth of body

e components of body veloeity along the 7,3,z
uxes, respectively

v resultant veloeity

£ Cartesian coordinates fixed relative to the
body

N2 forees on body along 5,7 axes, rvespectively

a nugle of attaek

g angle of sideslip

T
v ratio of the specifie hents, 'y=((—,"
2

) angle of roll

€ orifiec loeation on the test eones

Ent dimensionless  coordinates corresponding to
x,9,2, respeetively

0 time eoordinate

u mass of body

p density of the fluid

: . . : ao M8

T dimensionless time coordinate, - g

¢ perturbation potential function

* potentinl funetion

v,Q alternate time variables

w angular velocity of the bady

SUBSTRINTS

0 free-stream conditions
" viscous cross-force effeets
1,2,3 different funciions F, (', or (', except as
noted
SUPERSCRIPT

- veetor quantities

Except for syubols noted above, all variables used as
subscripts indieate partial differentintion with respect to
the subseript variable.

THE SIMJLARITY LAW FOR NONSTEADY
THREE-DIMENSIONAL FLOW

DEVELOPMENT OF THE LAW
The hypersonie similarity law is derived from the equations
of motion and cnergy und from the boundary conditions.
It deriving the lnw, the following assumptions are made:
(1) The Mech number of the nniform stream is large coin-
pared to 1; (2) the distibance velocities are small compared
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to the free-stream velocities; and (3) the flow is of the
potential type. These assumptions imply that the amlysis
is vestricled to hypersonie flow over slender bodies at small
augles of attack and to irrotational flows, respectively.  As
was indicated in the introdustion, the law lias been extended
to rotational flows by hoth Hayes and Goldsworthy. An
analysis is prosontod in Appondl\ A to show that the vota-
tional effects in a three-dimensional nonsteady flow obey
the hypersonic similarity law as formulated by the potontml
analysis.  Henee, the conclusious derived from the analysis
based upon potential flow will also be valid for rotatiounl
flow. The pwrpose of making the assumption of potential
flow i1s merely to simphify the analysis.

The coordinate system is fixed with vespeet to the body,
as shown iu figure 1.  Alse shown are the possible angular
velocities of the body and the direction of the velocity veetor
of the free stream. The angles have the conveuntional
positive sense of angles of attack and sideslip. Under
assumption (2), these angles must be small.

Frovre L. —Schematic diagram of orientation of body in flow.

The developiment of the law involves, first, derivation of a
simplified patential equatian deacrihine the flow second. the
statement of the boundary conditions, and third, the traus-
formation of these equations into nondimensional coordinates.

The simplified potential equation is obtained frownn the
uonstcady equation of motion and the energy equation which
are written in the following potential form:

Do - (b”((b,"'—(l.z)-{»(bw\(b "_(') -+ b, z(¢'_" ) -t
2, d, b, + B, P, P, b, PP,

2( D, Deot B, Pt P, b)) (1n)
1 2 2 2 w? Woadt
Qty @SR+ T = T (1h)

These equations ave expauded by expressing the potentinl-
function derivatives in the following perturbation form:

b, == "n—“;a. nﬁ + .
b,=—"VoB-ty, (2)
P, = V'Oa'*"Pz

D= J

I

The local speed of sound a can be elimnated by combining
the expanded forins of equations (1b) and (1a). The result-
i equation can be shimplified by negleeting higher order
terms keeping in mind that for hypersonic flows abont
sleuder shapes ¢;, ¢, ¢, and a, are sinall compared to 17
and that ¢, is small compared to ¢, aud ¢, The simplified
poteutial equation then assumes the following form:

’ 741 A, M
ﬂ+mmm%{nmww—n’p—(l>" o+

gy

=0 e et T T 0 B
[m"'h—ﬂ‘h,—w—)nw,+w+nm'm+

y—1 o
2 ay

‘- Fl <p11+(_y_|) P _ ]_*_-)[\[mp” “Ioﬁ'f‘ )+

G .‘I’ufhpg .‘I,.ago,, PP _
¢,,.(—.v.. R A )+.m.¢,,( Myat-

®: : ~"||<P:O_“I(IB‘PN PyPye "I"a‘pﬂ (2121 AW
ay ]+')( a £ + T )_0

g ay’ @,

(3)

The shape of thie body can be expressed by the funetional
velation
(4)

The unit outer norwmal nt u point ou the body surface is given
by thie veetor

G(ry,z2)=0
Ny (5)
mid the requiveinent that the body be slendev is satisfied by
the condition

<< (6)

Theve are two boundary conditions which must be satis-
fied. The first of these is that the perturbation velocity,
imposed by the presence of the body, must vanish at arge

m j } uAT

distunees nhend of the body. Consequently,
i"‘_-}‘y—";.._" S (7}

The othier boundary condition is given by the fact that the
flow is taugent to the body ut the surface, that is, for no
angulur veloeity

—

F¥F=0 (8)

The angular veloeity of a body will eanse an apparent dis-

tortioun of the veloeity veetor at the sinface of the body. By
expressing the nngular veloeity m the fornr,
G=piiqtrk (9)

the veloeity of each point on the surface of the body is then
given by the veetor eross produet

(10)

The boundary condition on the surface of the body then
hecomes

aXh-={gzs—ry)i-t (re— p)j+ (py—an)k

(V—w>h)N= (1)
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After equation (10) is expanded and cembined with equation
(11), and higher order terms neglected in aceordance with
equation (6), the second boundary condition essumes the
following form:

VoG — (‘-OB'—‘Py'*‘”’_l’:)Gﬂ‘l'
(Voa+tpi+gr—py)G.=0 at G=0 (12)

In obtaining the similarity law for flow about related
bodies, the equations of motion and houndary conditions are
expressedd in a nondimensional form. A nondimensional
coordinate system is introdueed by the following affine
transformation:

£
E=E!ﬂ='5)£'=—t')‘r='— =3 (13)

and 2 nondimensional perturbation potential function is
defined by the relation

TE, 5,8, ij= 5150

! 2
aoA[o(‘ (E)

where ¢, 5, and ¢ are a charaeteristic length, widtl, and depth
of the body, respectively. Under the coordinate trunsfor-
mation given above, equation (4) takes the form

g(£n.8)=0 (15)

By substitution of equations (13) amd (14), equations (3),
(7), and (12) become, respectively,

(14)

KXt £+ () fo | Kot = 0K
a+ 0 (B) KKt 6—1) KK fi+
VT‘(K'\ kYT R (= DK 1]+f"[1{ 4
(r— DK e~ (7—1)(- ) KiKafy4-(r b DK fr+

R € I O O Ll I

{ )1 (R) ':’f.,—l\',lx’ﬂ]+(%),f-,;[—1'\',.1\'.1—‘
KEofit Ko (50 et I\',fr)]+ Kofie (Kot Kuf 4

2{ Kifu—(F) o | BiRot (5 )B A [+

K fon (Kot Kf} =0 (16)

fo=fe=h=fi=0 at g=— o an

s (B)-(3)r+ () o1 () e ] )
s () (k) ] as

where

K= (19)

» —'A’n% (20)
B M 23 @1)
Ko=M, B (22)
K,— M, (’;—” 23)
K,= M, v) (24)
K,=M, (’7"') (25)

0

1t 1s seen then that, if two related bodies are flying with given
motions and attitudes so that the parameters, equations (19)
through (25), are the same for both bodies, the flows are
characterized by the same funetion f(¢,9,¢,7) and are there-
fore similar. The requirements expressed by the non-
dimensional form of the body-shape function, equation (15),
mrd the similarity parameters, equetions (19) through (25),
therefore constitute the similarity law of hypersonic flow.

A closer examination of the parameters K,, K,, K,, and
Kj reveals that an essential property of similarity is that the
lateral dimensions and the slopes of a hody with respeet to
the flow direction are in inverse proportion to the flight
Mach number.  In fact, the remaining parameters K,, K,
and K,, which relate to nonsteady motion of the body, ean
be interpreted by means of the same property. In rolling,
for example, points on the body surface . rm helieal
motions, and the quantity pb/17 in equat is simply
proportional to the slope of the helix with re._ «u to the flow
direetion. This slope must be inversely proportional to the
flight Mach number. Similar arguments may be applied
to Ag und A

Beceause of the complexities of algebra involved, the effeets
of angle of roll were not included in the previous equations.
ITad they been included, hewever, thoe reanlt wonld ha the
same as above with the additional requiremeni that the

angle of roll n:ust be the sume for the related bodies. Ience,
the additional hypersonie similarity parameter is

CORRELATION OF AERODYNAMIC FORCES AND MOMENTS

The eorrclation of aerodynamic forces and moments on
related bodies in unsteady hypersonic flows ean be developed
by consideration of the pressure distribation over the bodies.
The pressure relation is obtained from the energy equation,
equation (2), and is given in the following form:

-7_1 .2 =
I - "(13 | {8 y-1

Plig Lavet 240

7(1-

(27)

When this expression is simplified (in & manner paralleling
the development of the preceding section) to include only
higher order terms and put into nondimensional form, it
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rediuces to a function only of the nondimensional coordinates
and the similarity parameiers (for a constant v),

> 2
ll)("= II); (E: & K, Ky, K., K, K, K,, ’01 ) (28)
It is clear from this relation that for similar flows, the ratio
of the local to the free-stream static pressure is the sume at
corresponding points in the flow ficlds.?

The correlation of the acrodynamic forces and moments is
then obtained with the aid of equation (28) by integration
of the appropriate components of the pressure forces over
the related shapes. This corvelation can be given in the
following forms:

M= Co=C (K, Ko, K..'Ky, K. K,, K, K)) b
MECp=Co=Cp(Ky Ko, Ko, Ks. Ki. K,. Ko K)
Moo= Co=Co(K, Ky, Ko, Ks, K, K,. K, K,)
~ - T o > (29)
MoCn=Cn=Co (K . .. KD+ Cuf(K, .. K
My

R o e . | 5

('~=(n=("1(K' N I&,)+‘"U._, (,,2([\, IR )
MC=Ch=CyK, . . . K )

it appears, from the equations for the pitching-moment and
yawing-moment functions of equation (29), that these two
functions cannot be correlated for rvelated but otherwise
arbitrary body shapes. However, n careful examination
of the order of magnitude involved in the analysis indientes
that the second term on the right in these expressions becomes
negligible in magnitnde in all but two very special eases.
In the case of the pitching-moment fnnetion, both terms on
the nght side become of the same ovder of magnitude when
the { and n components of the miit normal to the body
surface are very small. This condition corresponds to an
Solated vertical fii as showie in ﬂguu' 2 (u). L’, im\u'\'('t',
the vertical fin is mounted en a body, or used in combination
with a body equipped with horizontal wings, the contribu-
tion of the vertical fin to the total pitehing moment will he
very small indeed.  The contribution of the second term in
the pitching-moment function for the entive body will, of

y

N

x
Z
<:£—— y
(a) (b)
(a) Pitching moment. (b) Yawing moment.

Frovrre 2.—Bodies excluded from similarity considerations as applied
to pitching end yawing moments.

course, he correspondisgly small.  An analogons situation
exists in the yawing-moment funetion for nn isolated wing
(fig. 2 (M) in which the / and m components of the unit
normal veetor are both small. For most practical aero-
dynamice shapes, therefore, the offending terms can be
neglected, and correlation of the acrodynamie coefficients
can be achieved as shown in the following relations:

M= G O (K Ky Ko Ko Ky K, Ky KD
-‘I(lz(,l) = (‘1[): (‘."I)(I{l\ Kh) Kav Kdv KO\ K[n va [{7)

-‘I()( 'l,'= (.C‘= (‘C(I{h Khv [{a; KB) KB- Kﬂy va Kr)
My =0 =0 (K, Ky Ko, Ks. K3, K,. K,, K,

> (30)

(== C (K, Ky Ko, Ke. K1 K, K,. K,)

M= Cr= CyK, Ky, Ko K, Ky, K, K, K,) J

DETERMINATION OF REGQUIREMENTS FOR DYNAMIC SIM-
ILARITY OF RELATED BODIES IN FREE FLIGHT

The requirements for dynamie similarity of related bodies
in free flight are developed on the assumption that the forces
and moments on suclt bodies are correlated by the law of
hypersonic similarity.  In order to determine the conditions
for dynamie similarity to be eoexistent with hypersonic
similarity, the dynamic cquations of motion should be
transformed to the same dimensionless coordinate system
that was nsed in developing the requirements for bypersonie
similnvity.  In addition, the velocity and force quantitics
shonld be expressed in terms of hypersonic similarity param-
eters.

In this dynamic system, only those forces are considered
wiiich correspond to the “power-off” conditions in free flight.
The coordinate axes are taken to be principal axes of the
body so that the produets of inertia vanish.  The dynamic
equntions of motion of the body are given by the relations

PR

A
Ug—=- 1"V + g —="—
n

re— puw—— == » (31)

@&

® N

We— g -+ po =

P

ped, s —qr(l, ,—1I._.) —.\I,l
g, ,—pr(d, .—1,_. )=\, (32)
rof . :—pq([,_,—vl,,,_,,)-—-:.\I,.s

The trnuslational and rotationnl veloeities may be expressed
in terms of hypersonic similarity parameters, the Mach
number, mnd the speed of sound of the free stream by the

relations
w=ayM,, 1= —aK;, w:aoka)

K K, X,

'
- r 3 .
p—ay b-} q no-(:—, r—(IQT "

(3:3)

1 Analogous statements cian he made for the ratlos of local to free-stream values of temperatire, density, and Mach aumber,
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Similarly, the acrodynamie forees nnd monients are given in
terms of the correlation functions by the relations

\v ( ((l()zl‘lob[‘)o)
M, 2
. aozl1fobtp()
¥ =0 (2Eer)
. ZA
- iﬁL ((lo goblpo)
~ a?Mobtp
M,=0b ( o aolen)

T bt
My T (Moo

2
M, =C.bM, (fl_o i‘{;_b’po)

N

(34)

o

By snbstitnting equations (33) and (34) into equations (31)
and (32), and by treating only that length of flight path
over which M, can be considered constant, the following set
of equations is obtnined:

KK.+K K=K\, (35)
dKs , ;.. KK, ;. =~ .
T dr +&,— Kb il (5]
dK, K,Ku_ d
dr —Ke- K, =KL G
1 dK, ) l KK, K, »
K K, df K,_, D=t 68
1 \K.K,
J v_v -(if- (Kz 2z x r Kb _p (39)
1 dK, 1 K,K, ,.~
R._. dr ‘(K,_,‘K,_, K, ~H U0
where K, is given by *
K=" 1)
and where
: etD p
K, ;= 1. (42)
. 21}
I‘v—v‘_; : (43)
y—=v
D
K, .= I (44)
p=%eo (45)

The initial conditions to this set of equations are the initial
values of the hypersonic similarity parameters.

If both hypersonie similarity and dynamic similerity are
to be achieved, it is required that equntions (35) through
(40) be independent of the Mach number as a sepamte
varinble. The climination of M from equation (38) is
impossibie in the general case, even approximately, beenuse

nll the terms involved may be of comparable order of magni-
tude. Consequently, since equation (38) is the relation for
rolling effects, it is indicated that flight paths which include
rolling eannot. be correlated by this method for obtaining
dynamic similarity. For motions that do not involve roll,
it is seen that dynamic similarity will exist for related shapes
if the hypersonie similarity parameters and the dynamie
similarity parameters given in equations (41) through (44)
remain invariant. These dynamic similarity parameters re-
late the masses of the bodies and the immersing fluids, as
well as the distribution of the mass in the body.

For rolling motions only, correlation can again be achieved
bat with a slightly different set of parameters. In this case,
only equation (38) remains and ean be rewritten as

1 dK, =~

K dr ¢ %)
where, now \

K, =" 47

so that correlation for pure rolling motions is now giver: by
the hypersonic similarity parameters and the parameter
K, ..

A familiar example of motions where rolling effects would
be absent is the case of motions confined to the plane of
svinmetry of the body, the so-called longitudinal motions.
To extend the application of this law to the more generel
case where there are lateral motions as well as longitudinal
ones, but no roll, it is necessary to have a suitable symmetry
of shape and to have the inertial properties satisfy the
relation

K, =K, . (48)

When these conditions are fulfilled, the flight paths of
related bodies can be correlated. As an illustrative example,
the distnrbed motions of related missile shapes can be ex-
amined. The lengiths of corresponding portions of related
flight paths would be proportional to the corresponding
Iongths of the shapes.  This property can be used to relate
the wmotind of damping in the disturbed flight paths. As
shown in Appendix B, the radii of curvature at corresponding
voints of the flight paths wonld be proportional to the prodnet
of the body length and the fliglit Mach number. Some of
these points are illustrted in the exnmple given in fignre 3.

APPLICATION OF THE LAW TO PARTICULAR SHAPES IN
STEADY FLOW

In steady flow, the three similarity parameters K,, K,
and K, are zero and equations (30) reduce to the following
form:

-~

MyCy= o= CL(K Ky Ko K, Ki) )

j\loz(’b p —‘IVU{KUKbIK“)KBYKO)

MCe= Co= Ce(K K, Ko Ky K)
. (49)

‘IO mT ‘(m(KhI\h-I\mK vKJ)

(‘n: (‘u: ('R(KI-KOyI\'m ’deJ)

M= C= C{R WKy KoKy Ky)

3 The parameter K, Is equlvalent to a familler stabillty-unalysis term known as tho relutive mass factor.
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Fraure 3.—Related *ving-budy combinations at hypersonic spevds.

It is important to note that the correlation of the acrodynamie
coefficients given by cqnations (30) was obtained on the basis
of two restrictions as to allowable bod s shapes.  (See section
Correlation of Aerodynamic Forces and Moments and also
fig. 2). These restrictions apply equally well to cquations
49).
BODIES OF REVOLUTION

For bodies of revolution, equations (49) reduce tof

~

..‘[o(yl,= (= r.ll(KhI\’l)

M 'n=(‘71;= (71)(KIVKG)§ (50)

~
3

"[0("": (ﬁm = ( M(I\-I'KG)

where K, is eliminated as it is identical to K,.* It is apparent
fromn these relations that the corresponding foree and moment
parameters have identical values for related bodies of revo-
Intion, provided the eorresponding similarity parameters
have identical vahies. It will now be shown that this
conchision can be generalized to inchude signiticant effects
of the viscous eross forces on related inclined bodies.

The viseous eross force arises from the boundary-inyer iiow
transverse to the body axis. A method of estimating this
force along with the lift, drag, and pitching-moment co-
officients assoeiated with it has been suggested by Allen in
reference 8 and is presented in Appendix C. The resuiting
expressions for these coefficients (see eqs. ((C3) in Appendix (*)

are transformed to the nondimensional form, and the
following relations arc obtained:
Mo =6. F1 (K, KD
M3, =84 12 (K, Ko) (51)

Mol 'y, =84, F3s(K,, Ko)

For slender bodies of revolution of the type under considern-
tion, éq, is primarily a function of the Mach number and

Reynolds number of the flow component normat to the hody

+ Bocanse of (he axlal symme(ry of bodies of revolullon, only angles of aftack are considered.
or combincd angler of urtack and sldeslip, while roll, of course, lus no meaninge.
511 (he angle of altack IS zero, £7e I3 also zero, and the expression for the drag paramieter rediees to o form gy

angles of side

axis.,  Consequently, these expressions ean be redueed to
the forin

My, =0,

(o (K Ko 1Y)
MPCy,= (" =y (K Ko R
A’[onm': (7m': ﬁm,(KlyKar [‘,r)

where R, is the cross Reynolds number.  For simall angles
of atiack, the cross Mach number is identical to K,. 1t is
clear, when comparing these relations with those of equation
(50), that the latter relations apply with equal validity when
viscous cross-flow effects are considered, provided that R,
is included as a similarity parameter.®

Nonlifting cones and ogives.—In reference 6 an analysie
was performed to determine the limits of applicability of
the hypersonic similarity law for nonlifting cones and
ogives.” To determine this limit for cones, surface pressures
were calenlated using reference 9 and were plotted as »
function of the similarity parameter K, as shown in figure 4.
A single enrve favoring the slender cones was faired throngh
the calenlated points. It is apparent that the similarity in
pressure holds for n wide range of valiues of K, for slender
cones. I it is assuaed that a pressure deviation of 5 percent
from the faired curve can be tolerated in using the similarity
tuw, tlien limits of similarity can be determined as a function

a9
44 [l
40 .
3¢
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3.2 ongle /
oo ] 52 ~
he 28 o i0° Vi
g o 15
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- 24
> & 30° " ES
3
§ 20} / A
c K
1.6
“L
1.2 ‘15
8
A o~
(o] 4 .8 12 16 20 24 28 32 36

Similority parameler, A,

Frorre - -Varinlion of pressire ratio, /1%, with similarity paramerer,
K, fur nonlifling coues,

This latter consuleration obviates a discussion of foree aud snoment  characternsies at
T elear, then, that the similiridy paraeters Ksand K areeliminated froum ihis analysis,
1o that oblamed by Tsen i refeemee 1,

¢ 1( 13 assumed (hat (be viscous flow consldered here does not stgnificantly lntluenr e the potential, inviscid flow disenssed previonsly.  Henee, the foree ana moment cocllicient s resulting

from these flows may be superituposed.

7 i should be notod that oglves nii »iat cxaclly o relnted set of bodies; nevertheless, (wey were chsen tun this sty sinee the conflzuration s of interest, il vhe devition 1o thickness

disiribution 13 not significant for slennler bodics.
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of Mach mumber ard fineness ratio ¢/t of ihe cone. The
limits determined in this way are illustrated in figure 5 (u).
The shaded area indicates the regions of Mach pumber and
fineness ratio where the similarity law as applied to pressure
on the cone will be in error 5 percent or more,

Since the surface slope of an ogive is largest at. the vertex,
the pressures at this point should provide a eritieal test for
similarity of pressures.  Acecordingly, the limits of applic-
ability of the law for ogives were determined in reference 6
from consideration of the pressures over a cone tangent to
the ogive at the vertex. Figure 5 (b) presents the limits of
applicability for ogives as obtained by this method. These
results illustrate the conclusions of reference 4 that the law,
as applied to nonlifting cones and ogives, is applicable over
a wide range of Mach numbers and fineness ratios in spite of
the simplifying assumptions made in the derivation,

A check of the applicability of the hypersonic similarity
law in a rotationnl flow field was performed in reference 7
by comparing the pressure distributions, obtnined by the
method of characteristies, over cgive cylinders at several
values of K,. The pressure distrilimtions for two ogive
cylinders at & vahic of K, of 2.0 are presented in figure 6
and serve to illustrate the general vesults obtained in refer-
ence 7. The high degree of correlution of pressures in figure 6
indicates that the hypersonic sunilurity law applies in »
rotational flow ficld and verifies the nnalysis presented by
Hayes in reference 2.

Lifting cones.—Far bodies of revolution at ungles of ut-
tack, a imited experimental elicek was nmnde in the Ames 10-
by 14-inch supersonie wind tunnel, Two cones hinving fineness
ratios of 3.0 and 4.9 were tested at Mach numbers of 2.75
and 4.46, respectiveiy: thus, the vanlue of KA, was 091,
Overlapping values of K, np to 14° were obtained.  Pressure
measurements were made at the loeations shown in figure
7 forangles up to 52 The results nre shown in figure 8 us o
function of K,. Agreement with the prediction af the
similarity law is generally ohserved, in that he values of
p/p; for corresponding points en thie two bodics lic essentially
along the same curve. The exeeption te this agreenent is
on the lee sides of the canes (e=180°) where it is noted that
significantly different curves are defined.  This difference

12
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77l /’? F <
ENN 7 ZWiL2s A . o
= 4/// / /7 /// A / [~
2 a 7/ ’/ b .~ N P A
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D97 7/ Doubttul appiicsu. ity @z
6 0 ? 10 12

a4 6 8
Fineness ratio, ¢/t

(a) Cones. (b) Ogives.
Frovre 5.—Range of applicanility of similarity law for nonlifting coi:es
and ogives.

2
Fineness ratio, ¢/?

is believed to be the result of the dissimilar flow separation
fram the two cones, cnused ity the faet that identical valnes
of R, could not he ohtained for the two cones at the same
value of K,. This difference in R, should not affect the
pressures appreciahly where separation does not occur.

8 M, c/t
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7
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Fiarue 6.—Variation of pressure ratio, P/P,, along nonlifting ogive
evlinders for & valne of the similarily parameter, Ky, of 2.0,
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(e} Orifice loeation, ¢, in transverse plane, A—A.
Frorke 7.—tocation of orifices on two cones tested al K,=0.91.
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Firaere 8.—Variation of pressure ratio, 1778, with A,, for 1wo cones
tested at A, - 0.01.

WINGS AND WING-BODY COMBINATIONS

1f, for spunwise symmetric wings, ouly angle of attuck is
considered, the similarity parnmeters Kg and K vanish
from cquations (49) and only three of the ncrodynumie
cocflicients remnin. The corresponding foree nnd moment
functions are reduced to the following form: *

.‘ ,ﬂ(.‘L = ;"1‘ - (‘.:,_(1\-/. l\’h. 1\-a)
R} In.'.( ‘l)= ~‘]) == (“‘p(l\-l, l\'b, l\',..) (5 3)
M= (~',,,= r‘,.(l\',, Ny R s

These relations nlso apply, of cowrse, to wing seetions.  In
this case, b and therefore K, are infinite and it is seen from
cquations (16) through (18) that the terms involving KA,
vanish and the equations reduce to the two-dimensional
equations for hypersonic flow. The similarity parameter
K, is this eliminnted from cqumtion (53). ‘This result is
equivalent to that presented in reference 1.°

Of practical imporiance is the conclusion to be druwn
from application ot the dhnensioniess equution of modon
(eq. (16)) and the dimensionless boundary condition (eq.
(18)), te stendy flow nboui thin wings at zero angle of yuw,
It is noticed in the equations thnt the parameter, K,, always

nppears in the form
bl)"'--. .
Ko - l()2

If b is of the same order of magnitude as ¢, then, consistent
with the other approximations made in developing thkis
equation, the terms involving (K/K,)? are to be neglected.
Performing this operation, however, yiclds the equation of
motion for two-dimensional flow. Thus, it is indicated that,
if the aspect ratio is of the order of magnitude of one or
greater, hypersonic flow about wings may be trented up-
proximately as a two-dimensional-flow problem. The latter
problem is, of course, relatively simple to solve.

From a physical point of view, this conclusion stems from
the fact that, in supersonic flow, the eifect of a disturbunce
at a point is confived to the conical zone formed by the

Much lines from that. point.  For very high Mach numbers,
this zone of influence i3 n nurrow region behind the dis-
turbanee.  Consequently, couditions nlong n streamline are,
for the most purt, independent of the conditions along
adjacent. streamlines.®®  For thin wings in hypersonic flow,
therefore, it enn readily be seen thut the zone of influence of
disturbanees enused by wing tips will, for exnmple, be small
compared to the wing uren if the nspect rutio is greater than
one. The effect of the tip disturbances on the aerodyramic
characteristies of the wing will, of eourse, be correspondingly
sinall.

Wing-body combinations may be thought of merely as
irregulur-shaped bodies.  As sucly, the aerodvnamic coeffi-
cients are correlated by equations (49) with the restrictions
discussed in relation to these equations, The illustrative
example, given in figure 3 in connection with the free-flight
motion of a wing-hody configurntion, enn be re-examined on
the basis of steudy flow, It is seen that in going from n
Mach number of 4 to n Much number of 8, the wing und
body lengths nre doubled, the angle of attack is decreased by
one-linlf, while the body thickness and wing spans remain
the sume, The changes in some of the aerodvnamic coeffi-
cients ure also shown in the figure.

CONCLUDING REMARKS

The similarity Inw for nonsteady, inviscid hiypersonic flow
about slender three-dimensionul shnpes hus been derived in
terins of customary nerodynamic parameters. The couclu-
sions drawn from the potentinl unulvsis nsed to derive the
law were found to apply also to rotational flows. As a
direct consequenee of this law, it wns found that the mtio of
the local static pressure to the free-stream static pressure is
the snme at corresponding peints in simiinr flow fields. With
the aid of this law, expressions were obtnined for eorrelating
the farees and moiment: acting on related shapes in hyper
sonic flows,

It waus found that the motion=: of relnted bodies in free
flizht conld he ecoreolnted vaine the hyvpersonic similarity
parnmeters and additional paramneters relating the inertial
properties of the hodies nnd the air densities,  The dynamie
similarity of the free flight of related bodies can be obtained
for motions which inelude pitehing and yawing but no
rolling.  For pare rolling moticas, similarity enn again he
acliieved.

Tu the ense of stendy flow abe it inclined bodies of revolu-
tion, the correlations of forces and moments derived from
the similarity lnw ean be generatized to inchide the significant
effeets of the viscous cross foree.

The results of a compntationnl analysis, using the metbod
of characteristies, showed thet the similarity law as applied
to nonlifting cones nnd ogives is applicable over n wider range
of Muclt unmbers nnd fineness ratios than might be expectecd
from the assumptions made in the derivation.

Ases Awnrovavrican Lasoraronry,
Nartionan Apvisory CoOMMITTEE FOrR AERONAUTICS,
Morrerr Fieen, Cawr, June 5, 1951,

¢ Parameters eqnivalent to (hese weee ohtained by Tsien wnd, wlthongh not publisinel, were presented in the foem of leetinre notes which were brougbt to the at(ention of 1he authiors ufter

completion of this Investigation,

* The cxponent = of .M, obtained here are ditferent froin (hose obtainel i referenee £, becanse b2 is nsed as a reference ared, rither * an e-d.
1 This reslt holds, In fact. lor nonsteacdy as well a3 steady hypersonic flow shout (hin wings, as potnted out hy Fggers In referenco 10,



APPENDIX A
EXTENSION OF POTENTIAL FLOW ANALYSIS TO ROTATIONAL FLOW

The hypersonie similarity lnw enn be extended to rotntional
flows by the method of Huyes (ref. 2).  This extension is in
fact demonstrnted by Ilayves' resnlts,  However, to under-
stund fully the rensonimg involved, it is instruetive to clabo-
rite on his analysis. Hayes showed thnt the hypersonic
potentinl equation for steady flow nbout slender shapes wns
identien]l to the wounsteady potential equation in one less
sputinl coordinnte under the transformation

r=ap M8 (A1)

In the case of two-dimensionni flow, the transformntion,
cquntion (A1), allows, for exnmple, the upper surface of the
hody profile to be replaced by the upper surfuce of a moving
piston as shown in figure 9. The piston motion mnst be
such that a given piston displncement i, ut time 6, will be
the sme as the ordinate on the body profile nt the coordinnte
# given by the velation =10,

© @
¥ f ! Piston
/I(gi)

M,
x
’
(a) (b)
) Sready low, (M Annlogons nonsteady flow,

Fraire 9. —"Two-dimensional steady flow and analogous one-dinen- I
sional nonsteady flow, i

In investigating the physient sigaificance of this timns- l
formation, lunyes pointed out thant its existenee vesulted |
from the basic assmuptions of slender bodies and large
Macl nnmbers. Sinee, as a resnlt of these assumptions, the
2 component of the fluid velocity does not change npprecinbsiy
und 1s always much greater than the local speed of sound,
there is essentinlly no chunce for disturbances to propagute
in the 2 direetion.  This is the essential feature that permits
the replacement of z by the time variable 6 and, hence, the |
existence of an analogous nonsteady flow,

Hayces further showed thut in hypersonic flow nbout
slender shapes the loenl Maclk number remains large com-
pared to one, even in the presence of strong shock waves l
enused by small surface inclinntions. Conseguently, the
consideration of the bypersonic flow wbout a slender body ns
n nonstationary problem in one less sputinl dimension ve-
mains valid when shock waves and the rvesnltant entropy
gradients are present.

One fnrther feature of laves' analysis, which is not
oxplicitly stated in veference 2,

This fentirre 38 illustrated for two-dimensionul flows as
follows: Tlie motion of the nonsteady boundary (in this case,
the piston fnce) enn be expressed in the following dimen-

sinmless forn;
0
!t’:T f” (%‘_)

tpon trunsforming to the two-dimnensionnl steady flow sys-
tany, by the substitition of equmtion (A1) into the functional
rehationship on the vight side of equution (A2), we obtein

=fn <l: Txl'—,) (\3)

ay r

r 1
-t“ (I||“[())=f" ;,' t

Vo
& < fn v
4 [/} '(:

ar

5 48 = fn (f); K,=constant (A4)

14 ¢/
Eq uation (Ad4) expresses the conditions for which the non-
ste ady flow svstem enn replace a steady flow system; namely,
that the body profile must be expressible in n specific non-
drmensional form and that the parameter, K, wust be
comstant for all profiles given by this form. These are, of
couse, the conditions of hypeisonic similitude in two-
dirmensionnl steady flow.  The extension of these considera-
tiomns to three-dimensional steady flow is straightforward

To extend these coneepts and results to three-dimensional,

noensteady fiow, the nonsteady purt of the flow may be
o nsidered, in the analogous nensteady flow, as = nonsteady
werntiant on the alveady nonsteady boundary.  This can be
deemonstrated with reference to the potential anuiysis us
o Hows: 1f the eansformation, r-=a,3fp, is used on the
erietion for stendv-state hypersonic flow in perturbation
fowrne

M, vl el v — et
Mg -] ) -1 s Y o
Ers (7 / ‘n 03 3] dy J a?l Pu
M, y-le viie YA
I o B i Tl [ ey
[ =L, @ LA 17 { @y BB
datr o) L
T P W) (Ad)
g o, /
Yre s obtained the cquation
ees [y o yite yole
,: ) RTINS D T
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| —fym3) T Fo T
I: (=5 (thy 2 Ay 2
- WPy ‘ﬂz‘/’h) 3
o Bt e yi)—=0 A6
< ay” ay” i ay ( )

is thnt similarity follows | By upplying the same transformation to the nonsteady flow

directly from the existenee of the nnalogons nonsteady flow. [ Cxqnation

1 1n all (he equations of This section, The wlined waes e 1ede 19 coinctle with e heely ave

10

1eeler nt Joobseure Yhe argument,
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with nn additional variable change of
Q=04y (A8)

the same equation (A6) is obtained with ¢ replneed by Q.
Hence, Hayes’ conclusions concerning stendy-state, three-
dimensional flow should npply equelly well to nonsteady,
three:dimensional flows.

APPENDIX B
CORRELATION OF THE FLIGHT-PATil CURVATURE

Consider related bodies moving througlh properly related
fhuids in paths of finite rdii of curvuture.  Equating the
centrifugnl foree to the side force, the foHowing relntion is
obtained:

T

1 =
1‘) =('(‘ .2 pO‘ UQA' (];l)

After rearranging in terms of similarily parameters, equation
(B1) becomes
My

A
R ¢

(K, })»——('Onslnnl B2)
The parameter Moe/R correlates the radii of curvatare ut
corresponding points of similnr flight pnihs.

This conclusion is also true for curved flight in the vertienl
plane.

APPENDIX C
FORCES AND MOMENTS DUE TO VISCOUS CROSSFLOWS ON

DNAnT™S AV DINCTAT TTTMTN
I L ALY JaiU s ICN

Inreference 11, Prandtl demonstrnted that laminar viscous
flows over infinitely long inclined exlinders nmay be treated
by ennsidering, independently, ihe componenta of the flow
normal and parailel 1o the uxis of the evlinder. Jones, in
reference 12, applied this concept to the study of boundary-
layer flows over yawed eylinders.  The work of Prandtl nnd
Jones saggests, as indiented Ly Allen in reference 8, that the
cross force on slender inclined bodies of revolution mny be
estimated in the following manner: Encli eross section of the
body is treated as an clement of an infinite eylinder of the
same radius. The cross foree per anit length on sach n
eylinder is given by the following eqantion:

8p==re; o0V S @ )

The incremental lift, drg, and mement produced by this
cross foree are then given by the relations

lifs  regpoV7 8in® a cos o
drug=reg )12 sint” @ (C2)
monient==rreq,p,17? 8in’ a

Retaining lending terms in @ and integrating over the body,
where r=r(r), the acrodynamic coefficients are given by the
equations

n

2%, ot (v 1
- «Cp [
Clpym— J rdr

'
(I)v-'

aﬂ N
‘ J“ rde (C3)

96 2
..(,1((!

= 1o J rodr
ER AN JU J

where the reference nrea is proportional to tlhie maximum
cross-sectional area of the body, and the referenee length is
the body length.  The coefficient &4, ts the mean eq, for the
body of revolution, and has therefore been taken ontside
the integral,
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